Adenosine inhibition of neutrophil damage during reperfusion does not involve KATP-channel activation.
نویسندگان
چکیده
This study tests the hypothesis that cardioprotection exerted by adenosine A2-receptor activation and neutrophil-related events involves stimulation of ATP-sensitive potassium (KATP) channels on neutrophils during reperfusion. The adenosine A2 agonist CGS-21680 (CGS) inhibited superoxide radical generation from isolated rabbit polymorphonuclear neutrophils (PMNs) in a dose-dependent manner from 17.7 ± 2.1 to 7.4 ± 1.3 nmol/5 × 106 PMNs ( P < 0.05). Pinacidil, a KATP-channel opener, partially inhibited superoxide radical production, which was completely reversed by glibenclamide (Glib). Incremental doses of Glib in combination with CGS (1 μM) did not alter CGS-induced inhibition of superoxide radical generation. CGS significantly reduced PMN adherence to the endothelial surface of aortic segments in a dose-dependent manner from 189 ± 8 to 50 ± 6 PMNs/mm2( P < 0.05), which was also not altered by incremental doses of Glib. Infusion of CGS (0.025 mg/kg) before reperfusion reduced infarct size from 29 ± 2% in the Vehicle group to 15 ± 1% in rabbits undergoing 30 min of ischemia and 120 min of reperfusion ( P< 0.05). Glib (0.3 mg/kg) did not change the infarct size (28 ± 2%) vs. the Vehicle group and did not attenuate infarct size reduction by CGS (16 ± 1%). Glib did not change blood glucose levels. Cardiac myeloperoxidase activity was decreased in the ischemic tissue of the CGS group (0.15 ± 0.03 U/100 mg tissue) compared with the Vehicle group (0.37 ± 0.05 U/100 mg tissue; P < 0.05). We conclude that adenosine A2 activation before reperfusion partially reduces infarct size by inhibiting neutrophil activity and that this effect does not involve KATP-channel stimulation.
منابع مشابه
اثر حفاظتی سیمواستاتین در آسیب ناشی از ایسکمی – رپرفیوژن کلیه و نقش کانالهای پتاسیمی حساس به آدنوزین تری فسفات
Background & Aim: Renal dysfunction due to ischemia-reperfusion (I/R) injury is a common problem following renovascular surgery or kidney transplantation. There is a lot of emerging evidence that statins, which are HMG-COA reductase inhibitors, have renal protective effects against ischemia-reperfusion injury,but the exact mechanism of their protective effect has not been detected properly....
متن کاملDiazoxide causes early activation of cardiac sarcolemmal KATP channels during metabolic inhibition by an indirect mechanism.
OBJECTIVE We have used isolated myocytes to investigate the effects of diazoxide on sarcolemmal KATP channel (sarcoKATP) activity and action potential failure during metabolic inhibition, and the role of these channels in protection of functional recovery on reperfusion. MATERIALS AND METHODS Isolated adult rat ventricular myocytes were exposed to metabolic inhibition (NaCN and iodoacetate) a...
متن کاملThe Mechanism of Preventive Effect of Captopril on Renal Ischemia Reperfusion Injury is Independent of ATP Dependent Potassium Channels
Background: Renal ischemia reperfusion (IR) injury has been a major source of concern during the past decades and angiotensin converting enzyme (ACE) inhibitors have been successfully used to prevent this injury. There have been some controversial reports about the involvement of KATP channels in the mechanism of action of ACE inhibitors. In this study, we examined the effect of KATP channel bl...
متن کاملMitochondrial ATP-sensitive K+ channels play a role in cardioprotection by Na+-H+ exchange inhibition against ischemia/reperfusion injury.
OBJECTIVES The possible role of the ATP-sensitive potassium (KATP) channel in cardioprotection by Na+-H+ exchange (NHE) inhibition was examined. BACKGROUND The KATP channel is suggested to be involved not only in ischemic preconditioning but also in some pharmacological cardioprotection. METHODS Infarction was induced by 30-min coronary occlusion in rabbit hearts in situ or by 30-min global...
متن کاملCardiac Preconditioning by Anesthetic Agents: Roles of Volatile Anesthetics and Opioids in Cardioprotection
Cardiac preconditioning is the most potent and consistently reproducible method of protecting heart tissue against myocardial ischemia-reperfusion injury. This review discussed about the signaling and amplification cascades from either ischemic preconditioning stimulus or pharmacological preconditioning stimulus, the putative end-effectors and the mechanisms involved in cellular protection. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 273 4 شماره
صفحات -
تاریخ انتشار 1997